dJun and Vri/dNFIL3 Are Major Regulators of Cardiac Aging in Drosophila
نویسندگان
چکیده
Cardiac aging is a complex process, which is influenced by both environmental and genetic factors. Deciphering the mechanisms involved in heart senescence therefore requires identifying the molecular pathways that are affected by age in controlled environmental and genetic conditions. We describe a functional genomic investigation of the genetic control of cardiac senescence in Drosophila. Molecular signatures of heart aging were identified by differential transcriptome analysis followed by a detailed bio-informatic analysis. This approach implicated the JNK/dJun pathway and the transcription factor Vri/dNFIL3 in the transcription regulatory network involved in cardiac senescence and suggested the possible involvement of oxidative stress (OS) in the aging process. To validate these predictions, we developed a new in vivo assay to analyze heart performance in various contexts of adult heart-specific gene overexpression and inactivation. We demonstrate that, as in mammals, OS plays a central role in cardiac senescence, and we show that pharmacological interventions impinging on OS slow heart senescence. These observations strengthen the idea that cardiac aging is controlled by evolutionarily conserved mechanisms, further validating Drosophila as a model to study cardiac senescence. In addition, we demonstrate that Vri, the ortholog of the vertebrate NFIL3/E4B4 transcription factor, is a major genetic regulator of cardiac aging. Vri overexpression leads to major heart dysfunctions, but its loss of function significantly reduces age-related cardiac dysfunctions. Furthermore, we unambiguously show that the JNK/AP1 pathway, the role of which in cardiac aging in mammals is controversial, is activated during cardiac aging and has a detrimental effect on cardiac senescence. This data-driven functional genomic analysis therefore led to the identification of key components of the Gene Regulatory Network of cardiac aging in Drosophila and may prompt to investigate the involvement of their counterparts in the cardiac aging process in mammals.
منابع مشابه
vrille, Pdp1, and dClock Form a Second Feedback Loop in the Drosophila Circadian Clock
The Drosophila circadian clock consists of two interlocked transcriptional feedback loops. In one loop, dCLOCK/CYCLE activates period expression, and PERIOD protein then inhibits dCLOCK/CYCLE activity. dClock is also rhythmically transcribed, but its regulators are unknown. vrille (vri) and Par Domain Protein 1 (Pdp1) encode related transcription factors whose expression is directly activated b...
متن کاملKAYAK-alpha modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons
alpha modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons" (2012). Neurobiology Publications and Presentations. Paper 137. Circadian rhythms are generated by well-conserved interlocked transcriptional feedback loops in animals. In Drosophila, the dimeric transcription factor CLOCK/CYCLE (CLK/CYC) promotes period (per), timeless (tim), vrille (vri), and PAR-domain ...
متن کاملThe Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye.
We cloned and characterized the Drosophila homolog of mammalian Jun-N-terminal kinases (DJNK). We show that DJNK is encoded by basket (bsk). Like hemipterous (hep), which encodes the Drosophila JNK kinase, bsk is required in the embryo for dorsal closure, a process involving coordinate cell shape changes of ectodermal cells. Dorsal closure can also be blocked by dominant negative Drosophila cdc...
متن کاملCycling vrille Expression Is Required for a Functional Drosophila Clock
We identified a novel regulatory loop within Drosophila's circadian clock. A screen for clock-controlled genes recovered vrille (vri), a transcription factor essential for embryonic development. vri is expressed in circadian pacemaker cells in larval and adult brains. vri RNA levels oscillate with a circadian rhythm. Cycling is directly regulated by the transcription factors dCLOCK and CYCLE, w...
متن کاملTranscriptional and Translational Mechanisms Controlling Circadian Rhythms in Drosophila: A Dissertation
Circadian rhythms are self-sustained 24-hour period oscillations present in most organisms, from bacteria to human. They can be synchronized to external cues, thus allowing organisms to anticipate environmental variations and optimize their performance in nature. In Drosophila, the molecular pacemaker consists of two interlocked transcriptional feedback loops. CLOCK/CYCLE (CLK/CYC) sits in the ...
متن کامل